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In this paper we investigate the effect of vertical rotation on the linear stability of 
an unbounded region of vertically stratified fluid, which has compensating horizontal 
temperature and salinity gradients, so there is no overall horizontal density gradient. 
We find the most unstable perturbations for given linear vertical and horizontal 
gradients and show how the addition of rotation affects the results found for the 
non-rotating case by Holyer (1983), using molecular diffusivities. By using a 
transformation that, for the non-oscillatory instability, links the rotating case to the 
non-rotating case we show that the growth rate, the across-front slope and the 
wavenumber of the intrusion with the maximum growth rate is unchanged. The basic 
difference between the non-rotating and the rotating case, for the non-oscillatory 
instability, is that in the rotating case the interleaving layers slope both along and 
perpendicular to the direction of the horizontal temperature and salinity gradients 
and not just along them. The oscillatory instability has no simple transformation 
between the rotating and the non-rotating cases, and the addition of rotation changes 
the growth rate and the wavenumber of the instabilities. 

1. Introduction 
A stratified fluid with horizontal temperature and salinity gradients, but no 

horizontal density gradient is unstable to infinitesimal perturbations (Holyer 1983). 
This statement is true even when the salinity increases with depth and the 
temperature decreases with depth, so that both components that contribute to the 
vertical density gradient are stably stratified. This situation has been studied in the 
laboratory by Thorp,  Hutt & Soulsby (1969), Wirtz, Briggs & Chen (1972) and 
Ruddick & Turner (1979), who all observed the formation of interleaving layers. 
Similar layers have been observed in the ocean by Stommel & Fedorov (1967), Horne 
(1978) and Gregg (1980). 

These intrusions have been investigated theoretically by Stern (1967), Toole & 
Georgi (1981) and Posmentier & Hibbard (1982) using the assumption that salt fingers 
are already present. They assume that the heat and salt fluxes are purely vertical, 
driven by the salt fingering. They model these fluxes by using uniform eddy 
diffusivities and taking the ratio of the heat flux to the salt flux to be a constant y .  
McDougall (1985) has also used vertical fluxes, but assumes that the fluxes are 
proportional to the salinity difference between the intrusions but are independent of 
their thickness. The models used by these authors all require the presence of salt 
fingers for the interleaving to occur, which is usually the case if the background salt 
gradient is unstable. Toole & Georgi (1981) argue that in the oceans the assumption 
that the fluxes are dominated by the salt-finger fluxes could also be valid for a stable 
background salt gradient. The laboratory experiments show that interleaving occurs 
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even when the salt gradient is stable and there are initially no salt fingers, a situation 
in which earlier models are not applicable. Holyer (1983) shows, using molecular 
diffusivities for heat, salt and momentum, how the interleaving instability develops 
and how the linear instability can grow until salt fingers appear. 

In  this paper we extend the work of Holyer to  include the effect of vertical rotation, 
which will be important to large-scale oceanographic applications and which may also 
be relevant to stellar dynamics (Knobloch & Spruit 1983). Holyer looked at  the ease 
with no rotation and determined thc fastest-growing modes for given temperature 
and salinity gradients. Worthcm, Mollo-Christensen & Ostapoff (1983) considered the 
effects of rotation, shear and horizontal gradients on the stability of an unbounded 
stratified fluid. They derived a characteristic equation similar to that obtained by 
Baines & Gill (1969) in their investigation of double-diffusive convection due to linear 
vertical gradients between horizontal stress-free boundaries. They then used this to 
investigate the stability boundaries of disturbances with no along-front structure. 

We show that with horizontal gradients and rotation the model is always unstable 
to some disturbance, and so thcrc arc no stability boundaries. We allow along-front 
structure and determine maximum growth-rate disturbances. 

I n  $2 we obtain the linear stability equations. I n  $3  the non-oscillatory instability, 
whcre the growth rate is real, is considered. In $4 we look a t  the oscillatory instability 
and how it alters as the rotation changes. 

2. The linear stability problem 
We consider an unbounded region of incompressible, rotating, stratified fluid. We 

assume that there is no horizontal density gradient, so that any horizontal temperature 
gradient present is balanced by a horizontal salinity gradient. The vertical temperature 
and salinity gradients may be cithw stabilizing or destabilizing. The rotation is 
assumed to be about a vertical axis. 1Vr look a t  the case where the undisturbed state 
has linear gradients of tcmperaturc and salinity, in both the horizontal and the 
vertical directions. Thc coordinates are chosen so that the z-axis is vertically upwards 
and the x-axis is parallel to the horizontal gradients. The y-axis will then lie in the 
horizontal, perpendicular to the horizontal gradients. With these coordinates the 
undisturbed tcmperaturc and salinity fields are given by 

To + T, x + T,  z ,  So +S;, x + Rz z ,  (2.1) 

where Fx, q, Sz and A!!~ are constants. M’e assume that the density p depends linearly 
on the temperature and salinity, so 

p = po(1 --ol(T-To)+P(S-So)), (2.2) 
where T and S are thc tcmperature and salinity and a and p are positive constants. 
Sinrc we rcquirc that there is no horizontal density gradient 

aq = p&, (2.3) 

We choose the x-direction so that L ! ~  is positive, which means that a t  any given 
depth the amount of salt increases as x increases. 

Making the Boussinesq approximation and letting the rotation rate for the system 
be $ with f = fz, the equations for t h e  infinitesimal perturbations, U, 7’, S and p to 
the velocity, temperature, salinity and modified pressure are 

( 2 . 4 ~ )  
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where 

(2.46) 
aT -++%+WE = K ~ V ~ T ,  

3s 

at 

at 
( 2 . 4 ~ )  -+ U g X  + Ws. = KS 8'8, 

v * u  = 0, 

u = (u, v, w). 

(2.4d) 

These equations are manipulated to give an equation for u :  

This is a linear equation with constant coefficients and so we can express the 

(2.6) 

where uo is a complex constant, k = (k, 1, m )  is the wavenumber vector and h is the 
growth rate, which can be complex. Substituting this solution into (2.5) gives us the 
characteristic equation 

solution as the superposition of solutions of the form 

u = Re{uo exp (ik-x+At)}, 

+fLm2(h + KT p2)  (h + K s , U 2 )  + fg/3J.yz(KT- K s )  P21m = 0, (2.7) 

where y = (k2+12+m2)i is the wavenumber. This solution is unstable if Re{h} > 0 
and is neutrally stable if Re { A }  = 0, when either h = 0 or A is pure imaginary. When 
h = 0, this is the case of marginal stability for a non-oscillatory exponentially 
growing disturbance, and, when h is pure imaginary, this is the case of marginal 
stability for an oscillatory exponentially growing disturbance. We look at the cases 
of steady and oscillatory growth of instabilities separately in $53 and 4 respectively. 

3. Steady growth 

Substituting into (2.7) gives 
When the solution is neutrally stable to a non-oscillatory instability h = 0. 

U E  ps, 
V 2 K T K S , U 1 0 + f 2 K T K S m 2 p 4  = -Vp4gKTKs( - - - )  (k2+12)  

KT K S  
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Considering the left- and right-hand sides separately, the left-hand side of (3.1) is 
always positive, and for fixed ratios of k, 1 and m is O(,u'O) as ,u+ 00, while the right- 
hand side is O(,u6). So for sufficiently large ,u the left-hand side of (3.1) will be greater 
than the right-hand side. Similarly, as p + O  the left-side is O(,u6) while the right side 
is dominated by the last term, which is O b 4 )  provided Sx + 0. If this last term is 
positive then the left-hand side becomes smaller than the right-hand side as p+O, 
and so there is some ,u such that both sides are equal and hence there is a solution. 
So we see that there is a point of neutral stability for any given salt and temperature 
gradients, provided gX + 0. Since there is a mode of marginal stability, which is on 
the border between stability and instability, we must also have for any given set of 
gradients a mode which is unstable provided the last term on the right-hand side of 
(3.1) is positive. Since K~ > K~ and ,TZ > 0 this gives 

f lm < 0. (3.2) 

Since we are not restricted in the choice of the sign of 1 and m we can always find 
a mode that satisfies this condition and is unstable. This condition implies that if there 
is a horizontal gradient of temperature and salinity then the fluid is always unstable 
to a non-oscillatory disturbance, just as in the non-rotating case. 

We now look for the instabilities with the largest growth rate. For non-oscillatory 
growth this occurs when 

We differentiate the characteristic equation (2.7) with respect to the wavenumber- 
vector components k, 1, and m and get three equations that are to be solved 
simultaneously with (2.7) to find the values of A ,  k, 1 and m that maximize the growth 
rate. By adding suitable multiples of these we obtain the following three equations 
that have to be satisfied along with (2.7): 

fk = l(h + vp2); (3.4) 

Equation (3 .4)  is analogous to results obtained by Posmentier & Hibbard (1982) 
and McDougall (1985) in their models that used cddy diffusivities and eddy-flux 
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FIGURE 1. Schematic illustration of the slope of the fastest-growing 
direct mode of instability with f > 0. 

coefficients respectively. If (3.4) is substituted into the equation for the vertical 
vorticity we get the result that for the fastest-growing mode 

Figure 1 gives a schematic illustration of the intrusions for the non-oscillatory mode, 
showing how the intrusions slope. 

Equations (3.4) and (3.7) give us the results found in the appendix of Holyer, that 
for the non-rotating case the fastest-growing disturbances are two-dimensional ones 
that go across the front (v  = 0 , 1 =  0). 

In the rotating case if we assume that a disturbance has v = 0 then we retrieve 
(3.4). So if we take 1 = 0, as assumed by Worthem et al. (1983), then the disturbances 
must have an along-front velocity component ( v  4 0) and will not then be parallel 
to the (2, 2)-plane. More importantly we would be excluding from consideration the 
fastest-growing modes. 

v = 0. (3.7) 

We now non-dimensionalize the equations for maximum growth. We define 

where H is the horizontal Rayleigh number and R, and Rs are the vertical thermal 
and saline Rayleigh numbers. 

(3.9) We also define g = -  V T = -  KS 

K T  K T  

By manipulating (2.7), (3.4), (3.5) and (3.6) we get the following non-dimensional 

(3.10a) 

where u is the Prandtl number and T the salt-to-heat diffusivity ratio. 

equations : 1 
F = i (q+u) ;  

(3. lob) 
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These last three are identical to the equations for the non-rotating case found by 
Holyer (in her case y2 = k2+m2).  These are only dependent on the ratio klm, q and, 
v ia  thc non-dimensionalization, y.  Thus for any given gradients gx, q, Rz, if we find 
a solution with the same A,  klm and y as for the non-rotating case, then the last 
three equations will bc automatically satisfied. Then we only have to satisfy (3.10~). 
Suppose that, for thc givcn gradients, the non-rotating case has a fastest-growing 

(3.11) 
mode with 

h = A,. 

Then, if we add rotation we find that 

k = (k,, 0, m,). 

A = A,, k = ( k ,  ('0s 8, (k:  + m$ sin 6, m, cos 6) ,  ( 3 . 1 2 ~ )  

where (3.12b) 

satisfies the conditions of not altering A, klm and y ,  and also satisfies ( 3 . 1 0 ~ )  and 
so is the fastest-growing mode for thc rotating case. 

This tells us that  the fastest-growing mode has the same growth rate, across-front 
slope, m,/k,, and absolute wavenumber as the system would have if it wasnon-rotating 
with the same temperature and salinity gradients. The only effect of the rotation is 
to tilt the fastest-growing intrusions along the front, while leaving the growth rate 
unchanged. As the rotation rate incwases the wave vector k tends towards being 
parallel with the front. Similar behaviour is also found by McDougall(l985). The wave 
vector is expected to become horizontal, since. in the limit off --f m, we would expect 
the fluid to obey Proudman's theorem and be independent of z. The transition occurs 
when the rotation rate is of order vp;. 

If, instead of using molecular diffusivities, we use eddy diffusivities appropriate to  
the ocean, then the effects of the Earth's rotation would be to tilt the intrusions along 
the front. This along-front slope would in general be less than the across-front slope 
and the vertical wavenumber m would be virtually unaffected by the rotation. The 
more extreme behaviour with the wavenumber vector aligning itself with the front 
would be outside the parameter ranges found in the oceans. 

4. Oscillatory growth 
When the system is neutrally stable to an oscillatory mode, A is purely imaginary. 

If we set A = iw, with w real, into the characteristic equation (2 .7)  and take real and 
imaginary parts we get the following pair of equations: 
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( V 2 K ~  + V2Ks + ~ V K T  Ks)  p6 + kmgpk!&, - K s )  
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+ f 2 m 2 ( K T + K S ) - ( 2 V + K T + K s ) p 2 W 2  = 0. (4.1b) 

In  order that a solution to these equations exists with real components of k, we find 
that, when the vertical density gradient is stable (ole > PRZ) and salt fingering is not 
possible in the basic state ( ( a q / K T )  - (Pgz/~S) > 0) ,  then the following inequality has 
to be satisfied : 

When f = 0 this gives the same condition as Holyer for a stably stratified fluid. 
The values of km/(k2  + 1 2 )  and f l / k  can always be chosen so that (4.2) is satisfied. This 
condition is a necessary condition for instability, but not a sufficient one. 

As with the non-oscillatory instabilities, we look for the mode with the fastest 
growth rate. This is the mode that has the largest value of Re{h}. Substituting 
h = A, + iw into (2.7), with A, and w real and w =/= 0, we obtain, after taking real and 
imaginary parts, the following pair of equations : 

+ A,(k2 + 1 2 )  g(ac -Pgz) + (k2 + I ? ~ )  p2gKT KS (:: 3 1  

-(4h,+ ( % ' + K r p + K ~ ) p ~ ) p ~ 0 ~  = 0. (4.3b) 

For the fastest-growing mode we have 

Differentiating ( 4 . 3 ~ )  and (4.3b) with respect to k, I and m gives us three pairs of 
equations that have to be solved simultaneously with ( 4 . 3 ~ )  and (4.3b) to yield the 
mode with the maximum growth rate. Unlike the non-oscillatory case these equations 

2-2 
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FIGURE 2. Graphs of the fastest-growing oscillatory instability for /3RZ = 2.76 x cm-', 
ccq = -1.12 x cmO s-l, K~ = 1.4 x 

cm2 s-l. (a) shows (i) A ,  (ii) w ,  (iii) k and (iv) m plotted against 
f for values off up to 0.1 s-l. (b) shows (i) k and (ii) 2 for values off up to 2 s-l with the dotted 
line showing p. The dashed lines are the asymptotics for small and largef. 

om-', and /3sz = - 1.25 x cm-l, with v = 1.1 x 
cm2 s-l, and K~ = 1.1 x 

do not yield a simple dependence of the fastest-growing mode on the rotation rate. 
Instead the behaviour of the oscillatory modes when rotation is added is investigated 
numerically. These investigations take the fastest-growing mode for a non-rotating 
system and see how this mode changes as the rotation rate is varied while keeping 
the temperature and salinity gradients fixed. Some results are shown in figures 2 
and 3. These show how the growth rate A,  the components of the wave vector (k, 1 
and m),  the wavenumber (p) and the frequency of the oscillation ( w )  change as the 
rotation rate is increased. 

Initially, as f is increased from zero, the instabilities develop an along-front slope 
with I lk  positive. When f becomes of order up; the fastest-growing mode undergoes 
a change of orientation so that its wavenumber vector becomes almost horizontal. 
Unlike the non-oscillatory case, this change is associated with changes in A, p and 
klm. The wavenumber vector initially becomes almost perpendicular to the front as 
it becomes horizontal. 

After this initial change A,  w and p remain virtually unaltered as f is increased 
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FIQURE 3. Graphs of the fastest-growing oscillatory instability for /3RZ = 4.90 x crn-l, 
aq = -8.60 x crn-l, and bgz = -9.65 x loes crn-l, with v = 1.1 x lo-' cmo s-l. K~ = 1.4 x 

crns s-l. (a) shows (i) A, (ii) w ,  (iii) k and (iv) m plotted against 
f for values off up to 0.04 s-l. (b )  shows (i) k and (ii) 1 for values off up to 1 s-' with the dotted 
line showing p. The dashed lines are the asymptotics for small and largef. 

cm2 s-l, and K~ = 1.1 x 

further. However, the wavenumber vector shifts its orientation from being almost 
perpendicular to the front to being parallel to it. 

In order to check some of the properties of these graphs one can obtain asymptotic 
expansions for small and large f. These, which are superimposed on the graphs in 
figures 2 and 3, were obtained by substituting power-series expansions in f into ( 4 . 3 ~ )  
and (4.3b) and solving for each power off. The expansions for small f were of the 
form 

( A ,  k ,  m, W )  = ko, mo, m,)+f2(& k2, m 2 9 4+ ..., 
1 = f l ,+f~l ,+ ..., 

and for large f (A ,  J ,  0 )  = (Ao, 4, q l ) + f 2 ( A , ,  12, w2)+ ..., 
( k ,  m) =fl(kl ,  mi) + f 3 ( k 3 ,  m3) + * * * 

In all cases the asymptotics are for the first two terms only. 
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5. Conclusions 
I n  this paper we investigate an unbounded stratified, rotating fluid with compen- 

sating gradients of heat and salt. We carry out a linear-stability analysis using 
molecular diffusivities, and find that thc fluid can be unstable to either direct modes 
or oscillatory modes. We show that, provided there are horizontal heat and salt 
gradients, the fluid is always unstable to a non-oscillatory mode and that the fastest- 
growing mode has the same growth rate, wavenumber and across-front slope as the 
non-rotating case investigated by Ho1yc.r (1983). The wave vector becomes horizontal 
and aligns itself with the front as the rotation rate becomes of order up2. This changing 
of the orientation of the intrusions is such that the fluid does not have an along-front 
component to  its velocity but moves in the direction of the horizontal temperature 
and salinity gradients. 

The fastest-growing oscillatory instability is also found to change its orientation 
so that its wave vector becomes horizontal and aligns itself with the front. In  this 
case, however, the two effects happen separately. Initially the wave vector becomes 
horizontal when the rotation rate is of order vp2. This transition is accompanied by 
variations in A,  k l m ,  p and w .  As the rotation rate is increased further the 
fastest-growing mode aligns itself with the front. This second transition is associated 
with almost constant A,  p and w .  

Holyer (1983) found that for the non-rotating case the non-oscillatory disturbances 
grew faster than the oscillatory disturbances except when T, is negative, /3sz/aT, lies 
between 1 and (a+ l ) / ( a + T )  and p8x.aq is small. The non-oscillatory disturbances 
will also grow faster in the rotating cast: if the same conditions on the gradients hold. 
When these conditions are satisfied thc oscillatory disturbance tends to have small 
m and is relatively unaffected by tho rotation. 

Thus in the ocean environment you would not expect to observe the oscillatory 
interleaving, though it  might be possible to  see i t  in the laboratory. 

The first author would like to thank the Science and Engineering Research Council 
for providing financial support. 
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